Act 43: What Water & Sewer Systems Need to Know about the Impact on Multi-Family Billings

An amendment to the Pennsylvania Municipality Authorities Act allows the owner of a multi-family dwelling to request a billing adjustment every five years if the amount billed exceeds the usage by 30% or more.  This could have wide-ranging impacts for water and sewer authorities that serve multi-family dwellings.  Our vice president Russ McIntosh discusses all of the implications in two articles in The Authority, a magazine published by the Pennsylvania Municipal Authorities Association.  The first article analyzes the language of  Act 43 line-by-line to advise authorities on how to comply. (Link opens in new tab.) The second article answers some frequently asked questions about Act 43 such as:

Is Act 43 retroactive?

Does act 43 affect the way I calculate tapping fees?

For larger garden apartment communities, should each building’s water meter be considered individually or combined with other buildings in the same community?

Act 43 requires authorities to compare metered water consumption with “actual usage” billed. How do you make this comparison if you bill on a flat rate?

Visit the Pennsylvania Municipal Authorities Association website at the links above to read these articles, and reach out to us with any questions you may have.

Bumble Bee Hollow Residential Development

WEBINAR: How to Cut Stormwater Costs with Partnerships & Collaboration

Communities report increased flooding in recent years – even outside the flood zone.
Aging infrastructure is at or near the end of its useful life, and signs of failure are appearing.
Regulatory agencies are requiring communities to do more to manage stormwater, but additional funding is not being provided.

These are big problems, and most communities can’t solve them alone. Collaboration is the key to keeping the cost of stormwater improvements manageable, and this webinar will show you how to make collaboration work for your community.

Our financial services practice area leader Adrienne Vicari joined Jim Cosgrove of Kleinfelder, Inc. and the New Jersey League of Conservation Voters to discuss the benefits of collaboration and offer tips communities can use to form effective partnerships. She identifies specific entities for partnership (including other municipalities, state and federal agencies, property owners, and a variety of non-profit organizations) and shows real world examples of how partnerships are saving municipalities millions of dollars on stormwater management and MS4 compliance.

Watch this free webinar below and contact Adrienne Vicari to discuss partnership opportunities for your community.

 

How Recreational Partnerships Deliver More Value for Local Communities

Bridge Management Systems: Safer Bridges with a Longer Lifespan at a Reduced Cost

Reduce the Cost of MS4 Compliance and Pollutant Reduction Plans Through Cooperation

Jim Tomaine speaks about the cooperative MS4 efforts in Luzerne County

Stormwater management has become a major priority for environmental agencies over the past decade, and communities are struggling to meet the increasing requirements to reduce stormwater pollutants and runoff volume. The cost is simply too high for many municipalities to bear alone, but it becomes much more manageable if municipalities can share the burden with their neighbors.

Take the Pollutant Reduction Plan requirement of the MS4 application as an example. If a municipality submits a Pollutant Reduction Plan on its own, it is limited to constructing BMPs within its own borders or the drainage way of its impaired streams, but DEP will generally accept the construction of BMPs anywhere within the watershed for an MS4 permit that is submitted by a regional cooperative. This means cooperating municipalities can install BMPs that yield the greatest pollutant load reduction for the lowest cost.

Usually the largest expense associated with BMP construction is the cost of acquiring land on which to build the BMP. An individual municipality may not have much land on which to build, particularly if it is an urban municipality in which most of the available land has already been developed. As a result, the municipality may be forced to implement a large number of BMPs that each provide only marginal individual benefit in order to meet the pollutant reduction goal. If a municipality submits a regional plan with other communities in the same watershed, it will have access to a much greater land area on which to build BMPs and a reduced need for right-of-way acquisition and easements.  This allows the participating municipalities to build the most effective water quality measures in the places with the greatest need.

Any improvements in upstream water quality will lead to improvements in downstream water quality, so a municipality can still see improvements in its water quality using a watershed-based approach even if a particular BMP is not located within that municipality’s borders.

When BMPs are constructed on a watershed-wide basis, the construction cost is typically lower due to economies of scale, and the water quality results are better.

Herbert, Rowland & Grubic, Inc. (HRG) is working with the Wyoming Valley Sanitary Authority on a regional stormwater collaboration that includes 32 municipalities in Luzerne County. These municipalities intend to meet 70% of their sediment reduction goal with a single BMP: conversion of existing flood control levees into a constructed wetland with a sediment forebay and a meandering stream channel.

Regional cooperation can save municipalities money in other ways besides BMP construction. For example, the cost of preparing the Pollutant Reduction Plan itself will be much lower as a result of cooperation due to economies of scale.

Hiring a consultant to assist with pollutant reduction planning can cost thousands of dollars. If that cost is shared with 10 other municipalities, each individual municipality only has to pay a small portion.

It’s like sharing your first apartment with two roommates when you were in your 20s. The fixed cost of rent and utilities is the same whether one person lives there or three, but each person pays less if they can split that cost three ways (instead of renting their own individual apartments).

Stormwater management involves many fixed costs like the cost of owning equipment to clean out inlets or conduct outfall inspections.

Spreading those costs across a greater number of users means each user pays a smaller price for service.

Another way cooperation can reduce the cost of stormwater management is by giving municipalities increased purchasing power.  Generally, you can negotiate lower unit costs for items when you buy them in larger quantities.  For example, cooperating municipalities could replace or slip line several miles of pipe for a lower cost if the work was completed as part of a larger, regional project. These savings apply to the bidding of services, too. The municipalities working with the Wyoming Valley Sanitary Authority saved hundreds of thousands of dollars on base mapping (i.e. orthophotography, impervious area, etc.)  by participating with WVSA under a single project (rather than having each municipality bid its own contract).

 

Municipalities have greater purchasing power when they cooperate on stormwater management solutions. For example, cooperating municipalities could slip line several miles of pipe for a lower cost if the work was completed as part of a larger, regional project.

 

A regional cooperative also has more borrowing power than a single municipality, and funding agencies are more likely to award a grant or loan to a regional project than one submitted by a single municipality. Funding agencies prefer regional projects because they believe regional cooperation streamlines costs, and politicians tend to support projects that benefit as large a constituent base as possible. A regional initiative should be tied together by legal agreements that assure the funding agency all funding will be properly administered. (These legal agreements are also required to meet DEP requirements for submission of a regional pollution reduction plan.)

This post is an excerpt from a longer article in the July-August-September issue of Keystone Water Quality Manager magazine. The article is focused on the cost savings communities enjoy by cooperating with regional partners on their stormwater management programs.  Read the magazine for advice on finding partners for your stormwater management program or contact us to request a copy.

 


Erin Letavic

Erin G. Letavic, P.E., is the regional manager of civil engineering services in HRG’s Harrisburg office. She guides municipalities and cooperative groups throughout Pennsylvania through the management of their MS4 permits, provides grant application development and administration services, and provides retained engineering services to local government.

Adrienne M. Vicari

Adrienne Vicari, P.E. is the financial services practice area leader at Herbert, Rowland & Grubic, Inc. (HRG). She provides strategic financial planning and grant administration services to numerous municipal and municipal authority clients. She also serves as project manager for several projects involving the creation of stormwater authorities or the addition of stormwater to the charter of existing authorities throughout Pennsylvania.

Benefits of Installing Green Infrastructure in Parks for MS4 Compliance

Last week, we shared how parks and recreational space can be the ideal location for green infrastructure and streambank stabilization projects that help you meet your MS4 compliance and pollutant reduction plan goals.  This week we discuss the benefits of this approach in another excerpt from an article we published in the April 2018 issue of Borough News magazine.

As we stated last week, the latest round of MS4 permitting requires many municipalities to implement a pollutant reduction plan that reduces the level of pollutants in their stormwater by as much as 10%. This will likely involve the construction of Best Management Practices (BMPs) like rain gardens or streambank stabilization projects, and the most expensive part of BMP construction is often acquiring the land on which to build.  This is why parks and recreational space can be an ideal location for BMPs because it’s land you already own; there are no land acquisition costs.

Middletown Borough is proposing to meet the majority of its MS4 pollutant reduction plan goal with the installation of a bioretention basin along the east side of Hoffer Park. This basin will be created by excavating an existing corrugated metal stormwater pipe and backfilling the trench with layers of bioretention bed components like engineered media, topsoil and mulch.  Water-tolerant native plantings will then be planted there.

Wilkins Township in Allegheny County is also proposing improvements to one of its municipal parks as part of it MS4 pollutant reduction plan. The township is upgrading Lions Park to include ADA accessible routes, a paved walking trail, playground, deck hockey and pavilion.  Many green infrastructure elements are being incorporated into the park design in order to manage stormwater on-site. For example, soil in all open spaces will be amended to enhance its structure and ability to promote infiltration.  A rain garden will be planted along with vegetated channels and a vegetated filter strip, as well.

Green infrastructure can save money in other ways, too.

  • Funding agencies often prefer projects that provide multiple benefits, so municipalities may be able to increase the opportunity for grant money by combining recreational and environmental goals into the same park improvement project. As part of the grant requirement for funding from the Pennsylvania Department of Conservation and Natural Resources, Lower Swatara Township integrated water quality BMPs into the rehabilitation plan for the playground at two of their community parks. The runoff from the playground area will be conveyed into rain gardens adjacent to the new playground and will be treated on site. The walkways from the parking area to the new playground will be porous asphalt to minimize the amount of runoff. Additionally, educational signage will be installed to educate playground visitors on the environmental and water quality benefits provided by the rain gardens.
  • Captured rainwater can be used for irrigation or toilet flushing, thereby reducing potable water consumption.
By SuSanA Secretariat [CC BY 2.0 (http://creativecommons.org/licenses/by/2.0)], via Wikimedia CommonsGreen infrastructure: rainwater harvesting tank

A rainwater harvesting system

But the benefits of incorporating green infrastructure into your park facilities go beyond saving money:

 Green infrastructure can improve the recreation experience for park users.

  • Natural vegetation can provide a habitat for wildlife and offer the opportunity for wildlife viewing.
  •  Vegetation can also reduce noise and provide visual barriers to set off private areas for picnics or meditation.
  •  Green infrastructure helps to ensure adequate flows in ponds and streams , so that park users can enjoy them.
Photo by ChattocaneeNF. Used under a Creative Commons license.Photo by ChattocaneeNF. Used under a Creative Commons license.
  • It is generally more attractive than large swaths of concrete piping and basins.
  • It improves drainage, which means park facilities are less likely to flood (and less subject to closure or cancellation of activities after a storm). North Middletown Township has proposed a bioretention basin in Village Park as part of its Chesapeake Bay pollutant reduction plan, but an added benefit of the basin is that it will help to prevent the frequent flooding of a playground within the park during heavy rain events.

Green infrastructure can reduce maintenance.

  • Standing water is a breeding ground for mosquitos, so maintenance personnel must be vigilant to prevent it. Improving drainage will reduce the effort needed to eliminate standing water.
  • Turf grass can be high maintenance. Rain gardens and bioswales can be populated with native vegetation that requires less watering, no chemicals, and less mowing or weeding.

Native vegetation requires less maintenace than turf grass

  • Vegetation along streambanks can slow or even absorb runoff before it reaches the stream, thereby reducing erosion. The vegetative root structures hold sediment in place to further reduce streambank erosion.

Installing green infrastructure in parks provides an opportunity to educate the public and encourage good habits.

  • Signs explaining how green infrastructure works can be used to meet MS4 education requirements under Minimum Control Measure #1. Cranberry Township, Butler County, is including signage about the bioswales they’re installing in Graham Park for this very reason. Schools and community groups can visit the site and learn how stormwater is managed. Park visitors can read the signs and may even be inspired to install green infrastructure on their own property. This extends the environmental benefits even further. The Wyoming Valley Sanitary Authority has pioneered an innovative regional partnership among more than 30 municipalities to cooperate on stormwater management and MS4 compliance. Their plan includes the creation of stormwater parks that will combine green infrastructure with signage to educate the public. (You can read more about WVSA’s award-winning initiative here. You can also read more about the wide-ranging services we’ve provided at Graham Park.)

 

Photo by Doug Kerr. Used via a Creative Commons license.

Educational signage about rain garden

Signage turns green infrastructure in parks into an educational piece that can be used to meet MS4 MCM #1 requirements.

 

To sum it up: Incorporating green infrastructure into your park and recreational facilities allows you to provide a better experience for your residents while minimizing the cost of complying with environmental regulation and reducing future maintenance needs. It’s win-win-win!

In next week’s post, we’ll talk about how municipalities can incorporate green infrastructure into their parks and recreational spaces, including how to identify locations for green infrastructure and how to coordinate with other groups to get the projects built.


Ben Gilberti, P.E., manages civil engineering services provided by Herbert, Rowland & Grubic, Inc. (HRG) throughout Western Pennsylvania, Ohio and West Virginia. He assists with the design of municipal infrastructure like sidewalks, stormwater systems, and sewer facilities.

James Feath, R.L.A., is a senior landscape architect at HRG. He has 20 years of experience in the planning and design of public spaces, including parks, trails, and recreational facilities.

Parks Provide the Ideal Location for Meeting Environmental Requirements

This post is an excerpt from an article we published in the April 2018 issue of Borough News magazine entitled “Parks Provide the Ideal Location for Meeting Environmental Regulatory Requirements.”

Clearfield Riverwalk

Parks aren’t just for fun and relaxation. They deliver significant value to the community, increasing property values, promoting health and wellness, and providing a gathering spot for people to socialize and get to know their neighbors. Did you know they can also help your municipality address environmental concerns like flooding, water pollution, and streambank erosion? This makes them an ideal location for meeting the regulatory requirements contained in the MS4 program.

The latest round of permitting added a new requirement for many municipalities to quantify the level of pollutants they are contributing to the watershed and execute a plan to reduce that level by as much as 10%. Municipalities can meet these requirements by implementing Best Management Practices (BMPs) like green infrastructure and streambank stabilization projects.

The most expensive part of these projects is often buying the land on which to build, so why not use land the municipality already owns in its parks and recreational facilities?

Green Infrastructure

The wide expanses of open space that parks contain are a natural fit for BMPs like green infrastructure.

Green infrastructure uses plants, soils and engineered materials to mimic the processes that absorb water and filter pollutants in nature.

When rain falls on developed property, it sits on the pavement or is directed into pipes and inlets.

Concentrating the water in this way contributes to erosion, and, when too much rain falls at once, those pipes can be overwhelmed. Then flooding occurs.  In urban areas, the rain water often carries trash and other pollutants into the waterways, as well.

Photo by Clean Bread and Cheese Creek. Used via a Creative Commons License.Trash in stormwater

This is not the case in nature. Rain water that falls on undeveloped land is absorbed into the ground. Plants and vegetation filter chemicals and other pollutants from the water before it can reach our lakes and streams.  Green infrastructure seeks to replicate this process.

Examples of green infrastructure include:

  • Rain gardens
  • Bioswales
  • Permeable Pavement

Rain gardens are shallow basins lined with water-tolerant native plants and amended soil media that collect and absorb stormwater runoff.  They are also sometimes called bioretention or bioinfiltration basins.

By BrianAsh at English Wikipedia(Uploads) (Transferred from en.wikipedia to Commons.) [Public domain], via Wikimedia Commons
rain gardens in parks can help with MS4 compliance

Bioswales are similar to rain gardens, but they are lined with plants that also filter pollutants from the runoff before it is absorbed into the ground. They are typically long and narrow and are thus well-suited for placement along streets and parking lots.

Bioswale in Frick Park

HRG helped identify green infrastructure opportunities for the Allegheny County Sanitary Authority (ALCSOSAN) that would help them address stormwater issues. This is a rendering of a bioswale in Frick Park along Amity Street in Homestead.

Permeable pavement is asphalt or concrete that is made to infiltrate runoff. Unlike conventional asphalt, permeable pavement is porous, and those pores allow water to seep into the ground.  Often a layer of aggregate or stones is placed underneath the surface pavement to help filter and store the water before it is absorbed into the soil.

Porous Pavement

Volunteers demonstrate how permeable pavement in the parking lot of a shopping center absorbs the water.

Watch a video about permeable pavementpermeable pavement video HRG incorporated into the West Caracas Avenue parking lot in Derry Township.  This video aired on by Fox43, a local news station in Central Pennsylvania.

Other examples of green infrastructure include tree canopies and rainwater harvesting systems.

Streambank Stabilization

Since many parks are already located along streams, they are particularly well-suited for streambank stabilization projects. In a fully developed community that lacks the open space needed for traditional land-based BMPs, a streambank restoration project in a municipal park offers the greatest opportunity for the community to meet its pollutant reduction goals.

This is the case for New Cumberland Borough in Central Pennsylvania. As part of its 2018 permit application, New Cumberland was required to prepare a Chesapeake Bay Pollutant Reduction Plan.  In this plan, the borough had to demonstrate how it will reduce its sediment load as part of a multi-state effort to clean up the bay.  The borough proposes to meet a significant part of that goal by planting a riparian forest buffer.  This buffer will extend the length of the borough park along the Yellow Breeches Creek toward the creek’s confluence with the Susquehanna River.  The buffer will slow down stormwater runoff and even absorb some of it in order to reduce further erosion of the streambank.

Streambank stabilization in Graham Park

A streambank restoration project HRG designed in Cranberry Township’s Graham Park

Incorporating green infrastructure and streambank stabilization projects into municipal park and recreational facilities helps to lower the cost of BMP construction for MS4 compliance, but it has many other benefits, too. In our next article, we’ll discuss more of the benefits of incorporating green infrastructure and streambank stabilization into park and recreational facilities.


Ben Gilberti, P.E., manages civil engineering services provided by Herbert, Rowland & Grubic, Inc. (HRG) throughout Western Pennsylvania, Ohio and West Virginia. He assists with the design of municipal infrastructure like sidewalks, stormwater systems, and sewer facilities.

James A. FeathJames Feath, R.L.A., is a senior landscape architect at HRG. He has 20 years of experience in the planning and design of public spaces, including parks, trails, and recreational facilities.